Data, drawings, and other material contained herein are proprietary to Cross Technologies, Inc., but may be reproduced or duplicated without the prior permission of Cross Technologies, Inc. for purposes of operating the equipment.

When ordering parts from Cross Technologies, Inc., be sure to include the equipment model number, equipment serial number, and a description of the part.
WARRANTY - The following warranty applies to all Cross Technologies, Inc. products.

All Cross Technologies, Inc. products are warranted against defective materials and workmanship for a period of one year after shipment to customer. Cross Technologies, Inc.’s obligation under this warranty is limited to repairing or, at Cross Technologies, Inc.’s option, replacing parts, subassemblies, or entire assemblies. Cross Technologies, Inc. shall not be liable for any special, indirect, or consequential damages. This warranty does not cover parts or equipment which have been subject to misuse, negligence, or accident by the customer during use. All shipping costs for warranty repairs will be prepaid by the customer. There are no other warranties, express or implied, except as stated herein.
MODEL 2117-3764 Up/Downconverter

1.0 General

The 2117-3764 Up/Downconverter converts 0.95 - 1.45 GHz to 5.925 - 6.425 GHz and 3.70-4.20 GHz to 0.95 - 1.45 GHz, with inverting spectrums. Front panel LEDs provide indication of DC Power, External 10 MHz, and PLL Alarm. The gain is +20 dB for the upconverter and +35 dB for the downconverter. Connectors are Type N female for the RF output and input, BNC female for the L-band input and output and external reference input and reference output. A three-way switch controls which 10 MHz reference is being used. In the AUTO position, the internal reference is used unless a +3 dBm ± 3 dB, 10MHz reference signal is connected to the external reference input. The 2117 is powered by a 100-240 ± 10% VAC power supply, and in a 1 3/4” X 19” X 19” rack mount chassis.

FIGURE 1.1 Model 2117-3764 Front and Rear Panels

FIGURE 1.2 Model 2117-3764 Up/Downconverter Block Diagram
1.2 Technical Characteristics

TABLE 1.0 2117-3764 Up/Downconverter Specifications*

<table>
<thead>
<tr>
<th>EQUIPMENT SPECIFICATIONS*</th>
<th>UP, C</th>
<th>DOWN, C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impedance/Return Loss</td>
<td>50Ω/14 dB</td>
<td>50Ω/14 dB</td>
</tr>
<tr>
<td>Frequency</td>
<td>0.95-1.45 GHz</td>
<td>3.70-4.20 GHz</td>
</tr>
<tr>
<td>Noise Figure, Max.</td>
<td>20 dB @ max gain</td>
<td>12 dB @ max gain</td>
</tr>
<tr>
<td>Input Level range</td>
<td>-40 to -20 dBm</td>
<td>-55 to -35 dBm</td>
</tr>
<tr>
<td>Output Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impedance/Return Loss</td>
<td>50Ω/14 dB</td>
<td>50Ω/14 dB</td>
</tr>
<tr>
<td>Frequency (GHz)</td>
<td>5.925-6.425 GHz</td>
<td>0.95-1.45 GHz</td>
</tr>
<tr>
<td>Output Level Range</td>
<td>-20 to 0 dBm</td>
<td>-20 to 0 dBm</td>
</tr>
<tr>
<td>1 dB comp, max gain</td>
<td>+10 dBm</td>
<td>+10 dBm</td>
</tr>
<tr>
<td>Mute @ 0 dBm out</td>
<td>>50 dB</td>
<td>N/A</td>
</tr>
<tr>
<td>Channel Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain, max. at Fc</td>
<td>+20 ±1 dB</td>
<td>+35 ±2 dB</td>
</tr>
<tr>
<td>Gain, range, 0.5±0.5 dB step</td>
<td>FIXED GAIN</td>
<td>FIXED GAIN</td>
</tr>
<tr>
<td>Image Rejection</td>
<td>>60 dBc</td>
<td>>60 dBc</td>
</tr>
<tr>
<td>Spurious, Inband, sig. rel.</td>
<td><50 dBc,0dBm</td>
<td><50 dBc,-5dBm</td>
</tr>
<tr>
<td>Spurious, Inband, sig. ind.</td>
<td><50 dBc,Gmax</td>
<td><50 dBc,Gmax</td>
</tr>
<tr>
<td>Spurious, Out of band</td>
<td><50 dBm, Gmax</td>
<td><50 dBm, Gmax</td>
</tr>
<tr>
<td>2 tone 4MHz del, -10 ea</td>
<td><50 dBc,Gmax</td>
<td><50 dBc,Gmax</td>
</tr>
<tr>
<td>Frequency Resp. band</td>
<td>±2 dB</td>
<td>±2 dB</td>
</tr>
<tr>
<td>Frequency Resp. 40 MHz</td>
<td>±0.5 dB</td>
<td>±0.5 dB</td>
</tr>
<tr>
<td>Frequency Sense</td>
<td>Inverting</td>
<td>Inverting</td>
</tr>
</tbody>
</table>

LO Characteristics

- **LO Frequency** Downconverter -5.15 GHz; Upconverter - 7.375 GHz
- **Frequency Accuracy** ± 0.01 ppm max over temp internal reference; external reference input
- **10 MHz Level** +3 dBm, ±3 dB, 75 ohms, External In or Internal out

<table>
<thead>
<tr>
<th>Phase Noise @ Freq (Hz)</th>
<th>100 MHz</th>
<th>1kHZ</th>
<th>10kHZ</th>
<th>100kHZ</th>
<th>1MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>dBC/Hz</td>
<td>-70</td>
<td>-80</td>
<td>-85</td>
<td>-100</td>
<td>-110</td>
</tr>
</tbody>
</table>

Controls, Indicators

- **INT/AUTO/EXT Switch** Selects internal or external 10 Mhz 9 (rear panel DP3T switch)
- **Ext 10 MHz** Yellow LED, indicates external 10 MHz reference selected
- **PLL Alarm** Red LED, External contact closures for Band 1 & Band 2
- **Power** Green LED

Other

- **RF Connector** N-Type, 50Ω, female (see TABLE 2.2 for other options)
- **L-Band Connector** BNC, 50Ω, female (see TABLE 2.2 for other options)
- **10 MHz Connectors** BNC, 75Ω, female
- **Alarm Connector** DB9, female - NO or NC contact closure on Alarm
- **Size** 19 inch Standard Chassis 1.75”high X 14.0” deep
- **Power** 100-240 ± 10% VAC, 47-63 Hz, 45 watts maximum

Options

- **Connector Options** See TABLE 2.2

*+10°C to +40°C; Specifications subject to change without notice.
2.0 Installation

2.1 Mechanical - The 2117-3764 consists of one RF PCB housed in a 1 RU (1 3/4 inch high) by 14 inch deep chassis. A switching, ± 12, +24, +5 VDC power supply provides power for the assemblies. The 2117-3764 can be secured to a rack using the 4 holes on the front panel. Figure 2.0 shows how the 2117-3764 is assembled.

![Diagram of 2117-3764 Mechanical Assembly]

FIGURE 2.0 2117-3764 Mechanical Assembly
2.2 Rear Panel Input/Output Signals - Figure 2.1 shows the input and output connectors on the rear panel.

Figure 2.1

INT AUTO EXT

GND

J102

AND MONITOR CONTROL

J8

J2 - EXT 10 MHz INPUT

BNC (Female), 75Ω

Insert external 10 MHz reference here (3 dBm ± 3 dB)

S1 - 10MHz SWITCH

3 position switch

INT selects 10MHz ref.

Auto selects internal 10MHz ref.

EXT selects external 10MHz reference from J2.

J101

1.6 to 1.8 GHZ IN

BNC Type Female 50Ω

-40 to -20 dBm

J11 - ALARM

DB9 (Female) connector.

See table 2.1

J102

9.3 to 9.5 GHZ IN

N-Type Female 50Ω

-20 to 0 dBm

J112

9.30 to 9.50 GHz OUT

N-type Female 50Ω

-20 to 0 dBm

S1 - 10MHz SWITCH

3 position switch

INT selects 10MHz ref.

Auto selects internal 10MHz ref.

EXT selects external 10MHz reference from J2.

J2 J101 J111

UPCON

J112

J11 - ALARM

DB9 (Female) connector.

See table 2.1

J112

2.00 - 2.20 IN

BNC -40 to -20 dBm

J6-10 MHz OUTPUT

BNC (Female), 75Ω

J8

RF2 IN

RF2 OUT

J101

RF1 IN

RF1 OUT

J102

MONITOR AND CONTROL

J111

DOWNCON

J112

UPCON

DC INPUT

GND

36 TO 72 VDC

J14

J2 S1 J8 J101 J102 J11 J111

FIGURE 2.2

2117-3764 Front Panel Controls and Indicators

DS3 - EXT 10MHz LED

Lights YELLOW when external 10MHz reference is active.

DS2 - ALARM LED

Lights RED when PLL comes out of lock.

DS1 - POWER LED A

Lights GREEN when DC voltage is present from AC power supply.

FIGURE 2.2

2117-3764 Front Panel Controls and Indicators

Shown below (Option P48) - Rear Panel Input/Output Signals with Option P48, 48 VDC nominal 36-72 VDC, 2.5A maximum.

FIGURE 2.2

2117-3764 Front Panel Controls and Indicators

DS3 - EXT 10MHz LED

Lights YELLOW when external 10MHz reference is active.

DS2 - ALARM LED

Lights RED when PLL comes out of lock.

DS1 - POWER LED A

Lights GREEN when DC voltage is present from AC power supply.
TABLE 2.1 J111 Pinouts (DB9)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not Used</td>
</tr>
<tr>
<td>2</td>
<td>Not Used</td>
</tr>
<tr>
<td>3</td>
<td>Not Used</td>
</tr>
<tr>
<td>4</td>
<td>Not Used</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>Alarm Relay: Common</td>
</tr>
<tr>
<td>7</td>
<td>Alarm Relay: Normally Open</td>
</tr>
<tr>
<td>8</td>
<td>Not Used</td>
</tr>
<tr>
<td>9</td>
<td>Alarm Relay: Normally Closed</td>
</tr>
</tbody>
</table>

TABLE 2.3 DC1 Pinouts

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minus DC input</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
</tr>
<tr>
<td>3</td>
<td>Plus DC input</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>Shell Ground</td>
</tr>
</tbody>
</table>

FIGURE 2.1 2117-3764 Rear Panel I/O’s

FIGURE 2.2 2117-3764 Available Options

TABLE 2.2 Available Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P48</td>
<td>48 VDC Nominal 36-72 VDC, 2.5A max.</td>
</tr>
<tr>
<td>R</td>
<td>Redundant AC Power Supply</td>
</tr>
</tbody>
</table>

Available Connector Options

<table>
<thead>
<tr>
<th>Connector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>50Ω N-Type (RF), 75Ω F-Type (L-Band)</td>
</tr>
<tr>
<td>N</td>
<td>50Ω N-Type (RF), 75Ω BNC (L-Band)</td>
</tr>
<tr>
<td>NN</td>
<td>50Ω N-Type (RF), 50Ω N-Type (L-Band)</td>
</tr>
<tr>
<td>SS</td>
<td>50Ω SMA (RF), 50Ω SMA (L-Band)</td>
</tr>
</tbody>
</table>

FIGURE 2.3 2117-3764 DC1 Pinouts

FIGURE 2.2 2117-3764 Available Options

FIGURE 2.3 Fuse Location and Spare Fuse

2.4 Installation / Operation
2.4.2 Installing and Operating the 2117-3764 Downconverter

1.) Connect a -55 dBm to -35 dBm signal to RF INPUT, J102 (Figure 2.1).
2.) Connect the L-BAND OUTPUT, RF1 OUT, J101 to the external equipment.
3.) Connect 100-240 ± 10% VAC, 47 - 63 Hz to AC connector on the back panel.
4.) Be sure DS1 (green, DC Power) is on and DS2 (red, Alarm) is off (Figure 2.2).
5.) Select either INT (for internal 10MHz ref), AUTO (for internal 10MHz ref UNLESS a external 10MHz, 0 dBm signal is connected to J2), or EXT (for external 10MHz, 0 dBm ref that is inserted at J2) on rear panel switch S1 (Figure 2.1).
6.) If EXT is selected or AUTO is selected and there is a 10MHz, 0 dBm signal at J2, check that DS3 (yellow, Ext 10 MHz) is on (Figure 2.2).
7.) Check that a 10MHz, 0 dBm ±3 dB signal is present at the 10 MHz REF OUTPUT (J8) (Figure 2.1).
8.) AC Fuse - The fuse is a 5 mm X 20 mm, 2 amp slow blow (Type T) and is inserted in the far slot in the drawer below the AC input as shown in Figure 2.3. There is a spare fuse in the near slot. If a fuse continues to open, the power supply is most likely defective.

2.4.3 Installing and Operating the 2117-3764 Upconverter

1. Connect a -40 dBm to -20 dBm signal to L-BAND INPUT, RF2 IN, J111 (Figure 2.1).
2. Connect the RF OUTPUT, J112, to the external equipment.
3. Connect 100-240 ±10% VAC, 47 - 63 Hz to AC connector on the back panel.
4. Be sure DS1 (green, DC Power) is on and DS2 (red, Alarm) is off (Figure 2.2).
5. Select either INT (for internal 10MHz ref), AUTO (for internal 10MHz ref UNLESS a external 10MHz, 3 dBm signal is connected to J2), or EXT (for external 10MHz, 3 dBm ref that is inserted at J2) on rear panel switch S1 (Figure 2.1).
6. If EXT is selected or AUTO is selected and there is a 10MHz, 3 dBm signal at J2, check that DS3 (yellow, Ext 10MHZ) is on (Figure 2.2).
7. Check that a 10MHz, 3 dBm ±3 dB signal is present at the 10MHZ REF OUTPUT (J8) (Figure 2.1).
8. AC Fuse - The fuse is a 5 mm X 20 mm, 2 amp slow blow (Type T) and is inserted in the far slot in the drawer below the AC input as shown in Figure 2.3. There is a spare fuse in the near slot. If a fuse continues to open, the power supply is most likely defective.
A. **Rack-Mounting** - To mount this equipment in a rack, please refer to the installation instructions located in the user manual furnished by the manufacturer of your equipment rack.

B. **Mechanical Loading** - Mounting of equipment in a rack should be such that a hazardous condition does not exist due to uneven weight distribution.

C. **Elevated Operating Ambient Temperature** - If installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack may be greater than room ambient temperature. Therefore, consideration should be given to Tmra. (Maximum Recommended Ambient Temperature)

D. **Reduced Air Flow** - Installation of the equipment in a rack should be such that the amount of air flow required for safe operation of the equipment is not compromised. Additional space between units may be required.

E. **Circuit Overloading** - Consideration should be given to the connection of the equipment to the supply circuit and the effect that overloading of circuits could have on over current protection and supply wiring. Appropriate consideration of equipment name plate rating should be used when addressing this concern.

F. **Reliable Earthing** - Reliable earthing of rack-mounted equipment should be maintained. Particular attention should be given to supply connections other than direct connection to the Branch (use of power strips).

G. **Top Cover** - There are no serviceable parts inside the product so, the Top Cover should not be removed. If the Top Cover is removed the ground strap and associated screw MUST BE REINSTALLED prior to Top Cover screw replacement. FAILURE TO DO this may cause INGRESS and/or EGRESS emission problems.