Data, drawings, and other material contained herein are proprietary to Cross Technologies, Inc., but may be reproduced or duplicated without the prior permission of Cross Technologies, Inc. for purposes of operating the equipment.

When ordering parts from Cross Technologies, Inc., be sure to include the equipment model number, equipment serial number, and a description of the part.

CROSS TECHNOLOGIES, INC.

6170 Shiloh Road
Alpharetta, Georgia 30005

(770) 886-8005
FAX (770) 886-7964
Toll Free 888-900-5588

WEB www.crosstechnologies.com
E-MAIL info@crosstechnologies.com
TABLE OF CONTENTS

Warranty 2
1.0 General 3
 1.1 Equipment Description 3
 1.2 Technical Characteristics 4
 1.3 Monitor & Control Interface 6
2.0 Installation 9
 2.1 Mechanical 9
 2.2 Rear Inputs/Outputs 10
 2.3 Front Panel Controls, Indicators 11
 2.4 Installation/Operation 12
 2.5 Menu Settings 13
 2.6 Use Information 17

WARRANTY - The following warranty applies to all Cross Technologies, Inc. products.

All Cross Technologies, Inc. products are warranted against defective materials and workmanship for a period of one year after shipment to customer. Cross Technologies, Inc.’s obligation under this warranty is limited to repairing or, at Cross Technologies, Inc.’s option, replacing parts, subassemblies, or entire assemblies. Cross Technologies, Inc. shall not be liable for any special, indirect, or consequential damages. This warranty does not cover parts or equipment which have been subject to misuse, negligence, or accident by the customer during use. All shipping costs for warranty repairs will be prepaid by the customer. There are not other warranties, express or implied, except as stated herein.
MODEL 2016-26 Downconverter

1.0 General

1.1 Equipment Description

The 2016-26 Downconverter converts 2000 to 2500 MHz to 140 ± 36 MHz in 1 MHz steps with low group delay and flat frequency response. Synthesized local oscillators (LO) provide frequency selection. Multi-function push button switches select the RF frequency and gain. Front panel LEDs provide indication of DC power (green), remote operation (yellow), and PLL alarm (red). Variable attenuators for the RF input provide a gain range of 0 to +50 dB as adjusted by the front panel multi-function pushbutton switches. Frequency and gain settings appear on the LCD display. Connectors are BNC female for RF, IF and optional 10 MHz Input and Output signals (option E). The unit is powered by a 100-240 ±10% VAC power supply, and housed in a 1 3/4” X 19“ X 16” rack mount chassis.

FIGURE 1.1 Model 2016-26 Front and Rear Panels

FIGURE 1.2 Model 2016-26 Downconverter Block Diagrams
1.2 Technical Characteristics

TABLE 1.0 2016-26 Downconverter Specifications*

Input Characteristics (RF)
- Impedance/Return Loss: 50 Ω /12 dB
- Frequency: 2.0 to 2.5 GHz
- Input Level: -70 to -20 dBm
- Input 1 dB compression: -15 dBm

Output Characteristics (IF)
- Impedance/Return Loss: 75 Ω /18 dB
- Frequency: 140 ± 36 MHz
- Output level: -30 to -20 dBm
- Output 1 dB compression: -15 dBm

Channel Characteristics
- Gain range (adjustable): 0 to +50.0 dB
- Image Rejection: > 50 dB, min.
- Spurious Response: < -45 dBC in band
- Frequency Response: ±1.5 dB, 2.5 GHz; ± 0.5 dB, 36 MHz BW
- Group Delay, max: 0.01 ns/MHz² (parabolic), 0.03 ns/MHz (linear); 1 ns ripple
- Frequency Sense: Inverting or Non-inverting (selectable)

Synthesizer Characteristics
- Frequency Accuracy: ± 1.0 ppm max over temp (±0.01 ppm, option H)
- Frequency Step: 1.0 MHz minimum (500 kHz, option 5) (125 kHz, option X)
- 10 MHz Level (In/Out): +3 dBm ± 3 dB (option E)

<table>
<thead>
<tr>
<th>Phase Noise @ Freq</th>
<th>100 Hz</th>
<th>1kHz</th>
<th>10kHz</th>
<th>100kHz</th>
<th>1MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>dBC/Hz</td>
<td>-70</td>
<td>-70</td>
<td>-80</td>
<td>-95</td>
<td>-105</td>
</tr>
</tbody>
</table>

Controls, Indicators
- Frequency Selection: Direct readout LCD; pushbutton switches
- Gain Selection: Direct readout LCD; pushbutton switches
- Power: Green LED
- Alarm: Red LED
- Remote: Yellow LED, RS 232C, 9600 baud (RS 422/485, option Q)

Other
- RF Connector: BNC (female), 50 Ω
- IF Connector: BNC (female), 75 Ω
- 10 MHz Connectors: BNC (female), 75Ω (option E)
- Alarm/Remote Conn.: DB9 - NO or NC contact closure on Alarm
- Size: 19 inch, 1RU standard chassis 1.75”high X 16.0” deep
- Power: 100-240 ±10% VAC, 47-63 Hz, 45 watts max

Options
- E: Allows ext. 10 MHz ref input, 10 MHz ref can be inserted on the RF in
- H: High Stability (± 0.01 ppm) internal reference
- Q: RS-422/485 remote capability
- X: 125 kHz frequency steps
- W1: Output Level Detector
- S: 500 kHz frequency steps
- Connector options: See TABLE 2.2

*+10°C to +40°C; Specifications subject to change without notice
1.3 Monitor and Control Interface

A) Remote serial interface

Protocol: RS-232C, 9600 baud rate, no parity, 8 data bits, 1 start bit, and 1 stop bit. (RS-232C, RS-422, or **RS-485 - Option-Q**)

<table>
<thead>
<tr>
<th>Female DB-9 PC Com Port</th>
<th>Male DB-9 2015/16/17 M&C Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Connector: Rear panel, DB-9 male

<table>
<thead>
<tr>
<th>J10 Pinouts (RS-232C/422/485)</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rx-</td>
</tr>
<tr>
<td>2</td>
<td>Rx+ (RS-232C)</td>
</tr>
<tr>
<td>3</td>
<td>Tx+ (RS-232C)</td>
</tr>
<tr>
<td>4</td>
<td>Tx-</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>Alarm Relay: Common</td>
</tr>
<tr>
<td>7</td>
<td>Alarm Relay: Normally Open</td>
</tr>
<tr>
<td>8</td>
<td>Not Used</td>
</tr>
<tr>
<td>9</td>
<td>Alarm Relay: Normally Closed</td>
</tr>
</tbody>
</table>
B) Status Requests

Table 1.1 lists the status requests for the 2016-34 and briefly describes them.

PLEASE NOTE: The two character \{aa\}(00-31) prefix, in the table below, should be used ONLY when RS-485, (OPTION-Q), is selected.

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Status</td>
<td>{aa51}</td>
<td>Returns {S1bbbcclA} where:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• bbbb = Rx frequency (4 characters) OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• bbbbb = Rx frequency (5 characters, option 5) OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• bbbbbbb = Rx frequency (7 characters, option X)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• cc = Rx gain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• I = 0 - non-inverted Receiver; I = 1 - inverted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A = Summary Alarm; 1=Alarmed, 0=Normal</td>
</tr>
<tr>
<td>10MHz Ref Status</td>
<td>{aa52}</td>
<td>Returns {S2E} where:</td>
</tr>
<tr>
<td>(option E only)</td>
<td></td>
<td>• E = 1 - external 10 MHz switched in</td>
</tr>
</tbody>
</table>
C) Commands

Table 1.2 lists the commands for the 2016-27 and briefly describes them. After a command is sent the 2016-27 sends a return “>” indicating the command has been received and executed.

General Command Format - The general command format is \{aaCND...\}, where:

\{ = start byte
\aa = address (RS-485 only - option -Q)
C = 1 character, either C (command) or S (status)
N = 1 character command or status request
D = 1 character or more of data (depends on command)
\} = stop byte

* PLEASE NOTE: The two character \{aa\}(00-31) prefix, in the table below, should be used ONLY when RS-485, (OPTION-Q), is selected.

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax*</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Receiver Frequency</td>
<td>{aaC2xxxx}</td>
<td>\cdot xxxx = 4 characters (1 MHz steps)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\cdot xxxxx = 5 characters (option 5, 0.5 MHz steps)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\cdot xxxxxxx = 7 characters (option X, 125 kHz steps)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\cdot Range: 2000 to 2500 MHz</td>
</tr>
<tr>
<td>Set Receiver Gain</td>
<td>{aaC4xx}</td>
<td>\cdot xx = 2 characters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\cdot Range: 00 to 50 (0 dB to +50 dB, in 1 dB steps)</td>
</tr>
<tr>
<td>Enable Spectrum Invert</td>
<td>{aaC7x}</td>
<td>\cdot 0 to disable spectrum invert</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\cdot 1 to enable spectrum invert</td>
</tr>
<tr>
<td>Enable External 10MHz IN</td>
<td>{aaCEx}</td>
<td>\cdot 0 to disable External 10MHz ref signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\cdot 1 to enable External 10MHz ref signal</td>
</tr>
<tr>
<td>Disable Remote</td>
<td>#</td>
<td>Just # sign</td>
</tr>
<tr>
<td>Enable Remote</td>
<td>{aaCR0}</td>
<td>{CR and zero}</td>
</tr>
</tbody>
</table>
2.0 Installation

2.1 Mechanical
The 2016-26 consists of one RF/Controller PCB housed in a 1 RU (1 3/4 inch high) by 16 inch deep chassis. A switching, ± 12, +24, +5 VDC power supply provides power for the assemblies. The 2016-26 can be secured to a rack using the 4 holes on the front panel. Figure 2.1 shows how the 2016-26 is assembled.
2.2 Rear Panel Input/Output Signals - Figure 2.2 shows the input and output connectors on the rear panel.

FIGURE 2.2 2016-26 Downconverter Rear Panel Inputs/Outputs

Table 2.1 J10 Pinouts (RS-485/RS-422/RS-232C)*

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rx-</td>
</tr>
<tr>
<td>2</td>
<td>Rx+ (RS-232C)</td>
</tr>
<tr>
<td>3</td>
<td>Tx+ (RS-232C)</td>
</tr>
<tr>
<td>4</td>
<td>Tx-</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>Alarm Relay - Common</td>
</tr>
<tr>
<td>7</td>
<td>Alarm Relay - Normally Open</td>
</tr>
<tr>
<td>8</td>
<td>Output Level Detector, 0 to +5 VDC (option W1 ONLY)</td>
</tr>
<tr>
<td>9</td>
<td>Alarm Relay - Normally Closed</td>
</tr>
</tbody>
</table>

*Interface: DB-9 Female; Protocol: RS-485, RS-422, or RS-232C (selectable), 9600 baud rate, no parity, 8 data bits, 1 start bit, 1 stop bit

TABLE 2.2 IF/RF Connector Options

<table>
<thead>
<tr>
<th>Option</th>
<th>IF</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD</td>
<td>BNC, 50Ω</td>
<td>BNC, 50Ω</td>
</tr>
<tr>
<td>B</td>
<td>BNC, 75Ω</td>
<td>BNC, 75Ω</td>
</tr>
<tr>
<td>D</td>
<td>BNC, 50Ω</td>
<td>BNC, 50Ω</td>
</tr>
<tr>
<td>N</td>
<td>BNC, 75Ω</td>
<td>Type N, 50Ω</td>
</tr>
<tr>
<td>M</td>
<td>BNC, 50Ω</td>
<td>Type N, 50Ω</td>
</tr>
<tr>
<td>SS</td>
<td>SMA, 50Ω</td>
<td>SMA, 50Ω</td>
</tr>
</tbody>
</table>

Option W1 Level Detector - Provides 0 to +5 VDC level indication for -60 to -30 dBm 140 MHz output. The DC voltage comes out on pin 8 of the DB9 connector, J10, with pin 5 being ground. The impedance of the 0 to +5 VDC level indication signal is 1kΩ. The relation between the change in output level and the change in DC voltage is linear.
2.3 Front Panel Controls and Indicators - The following are the front panel controls and indicators.

FIGURE 2.3 2016-26 Front Panel Controls and Indicators
2.4 Installation / Operation

2.4.1 Installing and Operating the 2016-26, Downconverter Section
1. Connect a -20 dBm to -140 dBm signal to RF In, J2 (Figure 2.2)
2. Connect the IF OUT, J1, to the external equipment
3. Connect 90- 260 VAC, 47 - 63 Hz to AC on the back panel.
4. Set the desired input frequency (See Section 2.5 Menu Settings).
5. Set the gain for 0 to +50 dB. Make sure the output stays within -20 to -30 dBm with the gain selected and the input level provided. (See Section 2.5 Menu Settings).
6. Be sure DS6 (green, DC Power) is on and DS2 (red, Alarm) is off (Figure 2.3).
7. AC Fuse - The fuse is a 5 mm X 20 mm, 2 amp slow blow (Type T) and is inserted in the far slot in the drawer below the AC input as shown in Figure 2.3. There is a spare fuse in the near slot. If a fuse continues to open, the power supply is most likely defective.

![Fuse Drawer and Spare Fuse Drawer](image-url)

FIGURE 2.4 Fuse and Spare Fuse Locations
2.5 Menu Settings

2.5.1 Functions

This section describes operation of the front panel controls. There are three operator switches, the LCD display and alarm indicator LEDs. All functions for the equipment are controlled by these components. The functions are (see Figure 2.5):

Power Up

Normal Display

<table>
<thead>
<tr>
<th>Menu</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu 1</td>
<td>Frequency in MHz</td>
</tr>
<tr>
<td>Menu 2</td>
<td>Gain (0 to +50 dB)</td>
</tr>
<tr>
<td>Menu 3</td>
<td>Set Unit to Remote Operation (Note: the local controls still function when in REMOTE)</td>
</tr>
<tr>
<td>Menu 4</td>
<td>Select Non-inverting or Inverting Spectrum</td>
</tr>
<tr>
<td>Menu 5</td>
<td>Select External 10 MHz Ref (option E)</td>
</tr>
<tr>
<td>Menu 6</td>
<td>Select 10 MHz Output (option E)</td>
</tr>
<tr>
<td>Menu 7</td>
<td>Select RS232, RS422, or RS 485 Remote Operation (option Q)</td>
</tr>
<tr>
<td>Menu 8</td>
<td>Select Remote Address for Unit (RS485 only) (option Q)</td>
</tr>
</tbody>
</table>

Save Menu When “R” is selected in any above menu or the next menu item after Menu 8

Alarm indications appear on the LEDs (see figure 2.2).

All program changes must start with the operation of the Menu/Execute switch and must also end with the operation of the Menu/Execute switch verified by the “Save Settings?” Menu. If this sequence is not followed, none of the changes will take effect. If programming is initiated and no operator action takes place for approximately 12 seconds (before the final press of the Menu/Execute switch) the display will revert to its previous status and you will need to start over.
2.5.2. Power On Settings

NOTE: The last status of a unit is retained even when power is removed. When power is restored, the unit will return to its previous settings.

When power is first applied, the LCD display goes through three steps.

1. The LCD goes black to show all segments are functioning.
2. The software version will be displayed.

 REV 1.00

3. The present frequency and gain of the downconverter is shown.

 F=2250 G=+00

The unit is now operational and ready for any changes the operator may desire.

2.5.3 Control Switches

1. **Menu/Execute** - Any change to the programming of the unit must be initiated by pressing the Menu/Execute switch and completed by pressing the Menu/Execute switch.
2. **Horizontal Switch** - This switch is mounted so its movement is horizontal and moves the cursor left or right.
3. **Vertical Switch** - This switch is mounted so its movement is vertical and has two functions:
 A. During frequency, gain changes, the vertical movement will raise or lower the selected number in the direction of the arrows.
 B. For other functions, the vertical switch will alternately turn the function on or off regardless of the direction operated.
2.5.4 Frequency Changes

At any time during the modification process, if you have made a mistake and do not wish to save the changes you have made, do not press the Menu/Execute switch; simply do nothing for approximately 12 seconds, and the system will return to the normal operating mode or scroll to “R” and push the menu/Execute switch and select “NO” in the “SAVE SETTINGS?” window.

To change the FREQUENCY:

1. Operate the Menu/Execute switch until you get to the menu item you want to change see Figure 2.5 for the sequence of menu options. The following display is for changing the downconverter frequency:

 \[
 F = 2250 \quad R
 \]

 Pressing the Up/Down switch down will toggle the display to:

 \[
 F = 2350 \quad R
 \]

 By using the horizontal rocker switch the cursor can be moved left or right.

 \[
 F = 2350 \quad R
 \]

 NOTE: CHANGES DO NOT TAKE PLACE ON FREQUENCY UNTIL YOU GO TO THE SAVE MENU AND INDICATE YOU WANT TO SAVE THE CHANGES. THE CARRIER IS MUTED WHEN FREQUENCY IS CHANGED.

 When the display indicates the value desired you can push the Menu/Execute switch to the next item:

 \[
 G = +00 \quad R
 \]

 OR you can scroll to “R”, push the Menu/Execute switch to get to:

 \[
 \text{SAVE SETTINGS? Y N}
 \]

 Selecting Y will save the new settings. Selecting N will revert to the previous settings.

 Pushing the Menu/Execute switch then takes you to the default display:

 \[
 F=2350 \quad G=+00
 \]

 Figure 2.5 shows all the menu items and how to make changes.
2.5.5 Gain Changes

When you get to this menu note that the gain changes will be made as you make them but if you do not wish to save the changes you have made, scroll to “R” and push the menu/Execute switch and select “NO” in the “SAVE SETTINGS?” window or do not press the Menu/Execute switch; simply do nothing for approximately 12 seconds, and the system will return to the normal operating mode.

To change the GAIN, first push the Menu/Execute switch to get to the gain setting:

Operate the Menu/Execute switch until you get to the menu item you want to change (see Figure 2.5 for the sequence of menu options).

NOTE: CHANGES TAKE PLACE ON GAIN IMMEDIATELY BUT DO NOT GET SAVED UNTIL YOU GO TO THE SAVE MENU AND INDICATE YOU WANT TO SAVE THE CHANGES.

Press the Up/Down switch to change the level in 1 dB steps and then push the Menu/Execute switch to get to the Gain setting:

![G = +00 R]

Press the Up/Down switch to change the gain in 1 or 10 dB steps:

![G = +10 R]

By using the horizontal rocker switch the cursor can be moved left or right.

Pressing the Up/Down switch down will toggle the display digit selected until you have the desired gain.

NOTE: THE GAIN WILL BE CHANGED AS YOU ADJUST THE NUMBERS. HOWEVER, THE VALUE WILL NOT BE STORED UNTIL YOU INDICATE YES IN THE SAVE SETTINGS WINDOW. DO NOT SET A GAIN THAT WOULD EXCEED 0 dBm OR HAVE LESS THAN -20 dBm OUTPUT LEVEL. THE FIRMWARE PREVENTS YOU FROM THIS.

When the display indicates the value desired you can push the Menu/Execute switch to the next item OR you can scroll to “R”, push the Menu/Execute switch to get to:

SAVE SETTINGS? Y N

Selecting Y will save the new settings. Selecting N will revert to the previous settings.

Pushing the Menu/Execute switch then takes you to:

F=2350 G=+10

Figure 2.5 gives the menu items and how to make changes
2.5.5 Alarm Indications
An alarm condition for will occur if the local oscillator phase lock loop (PLL) comes out of lock. The Mute LED will light if you select to mute the Tx Signal and the Remote LED will light when you select the Remote mode.

FIGURE 2.5 Menu Display and Sequence
2.6 Use Information

A. Elevated operating ambient temperature - if installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack may be greater than room ambient temperature. Therefore, consideration should be given to Tmra.

B. Reduced air flow - Installation of the equipment in a rack should be such that the amount of air flow required for safe operation of the equipment is not compromised. Additional space between unit may be required.

C. Mechanical loading - Mounting of equipment in a rack should be such that a hazardous condition does not exist due to uneven weight distribution.

D. Circuit Overloading - Consideration should be given to the connection of the equipment to the supply circuit and the effect that overloading of circuits could have on over current protection and supply wiring. Appropriate consideration of equipment name plate rating should be used, when addressing this concern.

E. Reliable Earthing - Reliable earthing of rack-mounted equipment should be maintained. Particular attention should be given to supply connections other than direct connection to the Branch (use of power strips).

F. Top Cover - There are no servicable parts inside the product so, the Top Cover should not be removed. If the Top Cover is removed the ground strap and associated screw MUST BE RE-INSTALLED prior to Top Cover screw replacement. FAILURE TO DO this may cause INGRESS and/or EGRESS emission problems.